
Deep Learning based Self-Adaptive Framework for
Environmental Interoperability in Internet of Things

Euijong Lee
Chungbuk National University
Cheongju, Republic of Korea

kongjjagae@cbnu.ac.kr

Sukhoon Lee
Kunsan National University
Kunsan, Republic of Korea

leha82@kunsan.ac.kr

Young-Duk Seo∗
Inha University

Incheon, Republic of Korea
mysid88@inha.ac.kr

ABSTRACT
IoT interconnects various entities including users, devices, informa-
tion, and services, thus, interoperability is essential to realize the
Internet of Things (IoT). There are various perspectives to support
interoperability IoT environment, and one interoperability prob-
lem is related to constructing IoT environments at runtime. The
problem is caused by that it is hard to predict IoT environments at
design time. In other words, the IoT environment can be dynami-
cally changed, thus an IoT system has to adapt to the change. To
solve the environmental interoperability, a self-adaptive framework
based on deep neural networks (DNN) is proposed to construct IoT
systems at runtime. The proposed framework provides requirement
verification and adaptation at runtime. Arduino-based IoT environ-
ments were implemented, and experiments were performed to show
the efficiency. The results showed the reasonable performance to
verify requirement satisfaction using DNNs.

CCS CONCEPTS
• Software and its engineering; • Applied computing;

KEYWORDS
Internet of Things, Interoperability, Self-adaptive software, Deep
neural network
ACM Reference Format:
Euijong Lee, Sukhoon Lee, and Young-Duk Seo. 2022. Deep Learning based
Self-Adaptive Framework for Environmental Interoperability in Internet of
Things. In The 37th ACM/SIGAPP Symposium on Applied Computing (SAC
’22), April 25–29, 2022, Virtual Event, . ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3477314.3507191

1 INTRODUCTION
The Internet of Things (IoT) interconnects various entities such as
user, devices, information, and services. The interconnected entities
can provide various services in several fields including smart cities,
smart farms, smart homes, and automobiles. However, to accom-
plish interconnection among different entities, interoperability is an
essential element [10]. Interoperability can be defined as “capability
to communicate, execute programs, or transfer data among various
∗Corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’22, April 25–29, 2022, Virtual Event,
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8713-2/22/04.
https://doi.org/10.1145/3477314.3507191

functional units in a manner that requires the user to have little or
no knowledge of the unique characteristics of those units” in an
international standard (i.e., ISO/IEC 2382:2015 [14]). With the defi-
nition, interoperability can be interpreted as various views in the
IoT environment [10]. In this paper, we focused on environmental
interoperability that is caused by a divergence of IoT environments.

As described, IoT required the interconnection of different en-
tities, and pre-defined information is used to construct IoT envi-
ronments. Therefore, there are various standard exists to support
interoperability of information changes [10]. However, the pre-
defined approach has a chronic problem that is hard to estimate
every possible combination of the entities. Also, it may not be
interoperable to exchange meaningful information. To solve the in-
teroperability problem, a self-adaptive framework based on a deep
neural network (DNN) is proposed in this paper. The proposed
approach aims to provide verification of requirements satisfaction
and adaptation strategies using data from IoT entities with minimal
information.

The remainder of this article is organized as follows. Section 2
provides background and related work. Section 3 introduced the
proposed self-adaptive framework for IoT environments. Section 4
presents the results of empirical experiments, and Section 5 con-
cludes this paper.

2 BACKGROUND AND RELATED WORK
In this section, background and related work are introduced. Sec-
tion 2.1 and 2.2 introduced self-adaptive software and deep neural
network. The related works are described in Section 2.3.

2.1 Self-adaptive software
Self-adaptive software aims to adjust various artifacts or attributes
of software to adapt detected context by itself [16]. The context
denotes everything in environments that can affect the software. In
addition, the self-adaptive software continuously required detecting
the context and adapting operation, thus a cycle should be needed
to deal with self-adaptation [16]. The cycle is called the adaptation
loop, and the loop consists of four processes. The processes are
described as below:

• Monitoring process is responsible for collecting data from the
software itself and operating environment.

• Analyzing (detecting) process is responsible for analyzing the
symptoms by using data from the monitoring process.

• Planning (deciding) process is responsible for deciding how
to change artifacts or attributes to achieve the batter perfor-
mance. (i.e., it is responsible for detect adaptation strategies
if and adaptation is required).

32

https://doi.org/10.1145/3477314.3507191
https://doi.org/10.1145/3477314.3507191

SAC ’22, April 25–29, 2022, Virtual Event, Euijong Lee, Sukhoon Lee, and Young-Duk Seo

• Executing (acting) process is responsible for applying change
(i.e., adaptive strategy).

The loop that consisted of four processes is called MAPE-loop. In
addition, the loop can have shared knowledge to share data among
the processes, and the loop is named as MAPE-K loop [3].

2.2 Deep learning
Deep learning is a class of machine learning algorithms based on
artificial neural networks. Also, the artificial neural network con-
structed a multilayered neural network (i.e., hidden layer) between
input and output, and the network is called a deep neural network
(DNN) [5]. DNN is an efficient algorithm to find some patterns
between input and output, thus it is applied to various areas includ-
ing self-adaptive systems [4]. In this paper, the design of DNNs is
proposed to verify requirement satisfaction and extract adaptive
strategies. The details of the DNN design are described in Section
2.2.

2.3 Self-adaptive software in IoT
In this section, recent studies that focused on self-adaptation for
IoT-based system, and various research topics (e.g., architecture,
algorithm, system, or framework) are introduced.

Nawaratne et al. [14] proposed self-evolving algorithms for data
interoperability in IoT environments. They investigated need for
interoperable algorithms to support IoT environments, and the
investigation was used real data from Metropolitan Fire Brigade
(MFB) in Victoria, Australia. A hardware and software architecture
to design dynamic reconfigurable IoT environments was presented
[17]. Burger et al. [1] proposed an IoT framework to support de-
velopment and deployment of distributed IoT environments with
adaptive hardware for continuous change, and the work is called
Elastic IoT platform. A mode checking-based self-adaptive frame-
work is presented [8, 11, 12] and the framework was named RINGA.
RINGA provides a design of finite-state machines for IoT, and a
game theory-based strategy extraction method [9] was applied to
RINGA for runtime adaptation.

Recently, various studies that are applied machine learning for
self-adaptation in IoT have been conducted. Van Der Donckt et
al. [18] presented deep learning-based approach for adaptation
space reduction, and the approach was named DLASeR. A MAPE-K
loop-based self-adaptive architecture with cooperation of machine
learning and model checking was proposed [2, 13]. Pauna et al. [15]
presented a self-adaptive honeypot system to detect and prevent
malicious attempts in IoT environments.

In summary, each of the studies includes distinct characteristics
with various approaches in different target IoT environments. In
this paper, we focused on environmental interoperability that is
caused by a divergence of IoT environments, and proposed a self-
adaptive framework with DNN design.

3 DEEP LEARNING BASED SELF-ADAPTIVE
FRAMEWORK FOR IOT

In this section, details of the proposed framework are described. In
Section 3.1, an overview of the proposed framework that is based
on a neural network to solve environmental interoperability. Also,

Figure 1: Overview of neural network based self-adaptive
framework

the neural network is described to design the neural network for
self-adaptation in Section 3.2.

3.1 Overview
The proposed framework focused on interoperability problems
related to constructing IoT systems with various entities. The pro-
posed approach constrained entities to compose IoT systems as
actuators, sensors, requirements, and operations to minimize pre-
defined information. The actuator is defined as a device that changes
physical entity [6]. The sensor is defined as a device that measures
physical entities and outputs digital data [6]. The requirement is
generated from users and must have to be satisfied at runtime.
The operation defined executions of the actuator to satisfy the re-
quirements. However, in the proposed framework, However, it is
assumed that the sensor only provides measured data without addi-
tional information (e.g., what is a physical entity related to the data
and location of a sensor). Also, the actuator also only provides the
status of itself and is operated by input values without additional
information (e.g., an actuator can change which physical entity).
Requirements and operation are assumed by user behavior. Also,
requirements satisfaction and proper operation (i.e., adaptive strat-
egy) are measured and extracted by using the data from sensors
and actuators. The details are described below.

The proposed framework is consisted with MAPE-loop that is
general process of the self-adaptive system, and the details of each
processes are as follow. (See Figure 1) The monitoring process is the
first step of the process and has two responsibilities: collecting data
and performing machine learning. First, various data are collected
from status of IoT devices (i.e., sensor and actuators) and user’s
behavior. The user’s behavior can be collected in various ways;
for example, operations of actuators and setting the requirements
factor via the application. Therefore, the way of collecting behavior
is not limited, and it is assumed that the operation of actuators from
user’s behavior potentially involves adaptation strategy. However,

33

SIG Proceedings Paper in LaTeX Format SAC ’22, April 25–29, 2022, Virtual Event,

the collected data are saved in the database and used for machine
learning. If the data is sufficiently collected for machine learning,
deep neural networks are trained and tested. The machine learn-
ing focused on two perspectives: context detection and extracting
adaptive strategy from human intention. Therefore, two types of
neural networks are generated as neural network for requirement
(NNR) and neural network for strategy (NNS) The details of the
criteria of generating the neural network are described in Section
3.2. The trained neural networks are used to analyzing and plan-
ning processes. The analyzing process is responsible for verifying
requirement satisfaction using trained neural networks (i.e., NNR).
In this process, it is analyzed which requirements are satisfied or
not. The analyzed results are transferred and used in the planning
process. The planning process is responsible to generate an adap-
tive strategy using NNS, and the adaptive strategy is transferred to
the execution process. The execution process operates the adaptive
strategy from the previous process.

As described previously, the proposed framework performs self-
adaptation using result of trained neural networks (i.e., NNR and
NNS). Therefore, the design of the neural networks is most impor-
tant, and the details of the design are described in Section 3.2.

3.2 Neural network design for IoT
In this section, designs of neural networks are introduced. The
neural network for requirement is described in Section 3.2.1, and
the neural network for adaptive strategy extraction is described in
Section 3.2.2

3.2.1 Neural network for requirement. The design of a neural net-
work to verify satisfaction of user requirement (i.e., NNR) is de-
scribed as below. The input data of the NNR have consisted of
collected data from actuators and sensors, and the output is the
satisfaction of user requirements. The input may be simply col-
lected by sensing the status of sensors and actuators. Data from
sensors is directly related to some factors (e.g., a light sensor is
related to brightness). Also, the actuators may be related to some
factors indirectly. (e.g., status of windows may affect brightness,
humidity, and dust density).

The output requires definitions that can denote user satisfaction.
For example, if an actuator is operated by a user, it may denote
that a requirement does not satisfied. Because the operation may
be caused to change a status that is related to the requirement. In
other words, requirements are satisfied if any actuators are not
operated by the user. Also, if an IoT system can provide a function
that users can set criteria of satisfaction, the output data can be
collected easily.

The number of hidden layer and number of neurons in a hidden
layer can affect training performance and machine learning results.
Therefore, criteria are proposed to adjust number of hidden layers
and neurons.

• A number of hidden layers are bigger than a number of sen-
sors and smaller than a summation of sensors and actuators.

• A number of neurons in a hidden layer are bigger than a
number of inputs (i.e., summation of sensors and actuators)
and smaller than three times the input.

Each requirement has a different effect on the input value, thus
NNRs are generated for each requirement based on the design and

Table 1: Component of the IoT environment for experiment

Type ID Location Related requirement

Sensor
Humidity (in) Inside Humidity
Brightness (in) Inside Intensity of illumination
Humidity (out) Outside Humidity
Brightness (out) Outside Intensity of illumination

Actuator
Lamp Inside Intensity of illumination
Humidifier Inside Humidity

Windows Outside Intensity of illumination
and humidity

the criteria. Finally, NNR implies the effect of the current status of
sensors and actuators on each requirement. Therefore, the proposed
framework can detect satisfaction of requirements using NNR at
run-time.

3.2.2 Neural network for self-adaptation. The design of a neural
network to extract adaptive strategy (i.e., NNS) is described be-
low.The input values of NNS are status of actuators and sensor data,
and the output is the operations of each actuator. Therefore, the
NNS is generated for each actuator. Also, the adaptive strategies
must have to satisfy requirements, thus only data that satisfy users’
requirements are applied to train the NNSs. As the result of the
training, the NNSs can extract appropriate operations of each actu-
ator to satisfy requirements in the current status. Design criteria
for neurons and hidden layers is same as NNR.

4 EMPIRICAL EVALUATION
In this section, the experimental environment is described with
Arduino implementation. Also, the experiments and results are
described using data from the implementation.

4.1 Experimental environment
To perform experiments, a simple IoT environment was imple-
mented. The IoT environment has two requirements that are the
intensity of illumination and humidity. Table 1 shows the sensors
and actuators that consist of the experimental environment. Also,
it is assumed that the IoT environment has predefined ranges to
verify satisfaction of the requirements. The brightness has to be ad-
justed from 170 to 200 lux, and the humidity required to be adjusted
between 32 to 34 %.

Actuators can be classified into two types by how it affects: direct
and indirect. The former is lamp and humidifier, because operations
of the both actuators directly affects the requirements. The later
is windows, because windows may affect requirements, but it is
depending on status of outside environments. Therefore, sensors
are located inside and outside to measure status of brightness and
humidity in the different location. However, in this article, we only
performed experiments that related to NNR and brightness, and
the results are described in the next section.

4.2 Experiment results
The experiments were performed to evaluate the proposed neural
network design (i.e., NNR). The IoT environment collected the
data, and it includes various situations among actuators, sensors,
and requirements. The data was collected every 100 MS, and only
836 and 241 data was used for training and testing to show the

34

SAC ’22, April 25–29, 2022, Virtual Event, Euijong Lee, Sukhoon Lee, and Young-Duk Seo

Figure 2: Results of NNR (accuracy)

excellence of the proposed approach. In the experimental setup,
the hardware consists of Inter Core i7-10700K CPU (3.8 GHz), 32
GB memory, and NVIDIA Geforce RTX 3070. NNR and NNS are
designed the proposed criteria (see Section 3.2.1), and the applied
features in the neural networks are as below:

• Linear transformation was applied in the hidden layers for
the incoming data.

• L1 loss [5] was applied as a loss function
• ReLU [7] was applied as activation function.
• Stochastic gradient descent (SGD)[5] was applied as an opti-
mizer.

• Learning rate, batch size, number of epochs was set as 0.0002,
50, and 50

Figure 2 shows results of NNR, and figure denotes change rate
of accuracy. In conclusion, the NNR shows accuracy with test data
86%, and the result shows reasonable accuracy even with small
amount of training data.

5 CONCLUSION
In this article, a self-adaptive software framework with DNN de-
sign to solve environmental interoperability problems in IoT. The
proposed framework consisted of MAPE-loop which is the general
process of self-adaptive systems. In addition, two types of DNN
designed are introduced: DNN to verify satisfaction of requirements
(NNR) and DNN to fine adaptive strategies (NNS). The DNNs are
applied in MAPE-loop and used to self-adaption. The experiments
were performed to show the efficiency of the proposed framework,
and Arduino-based IoT environments were implemented. The re-
sults showed reasonable results to verify requirement satisfaction
using NNR. In the future, experiments will be performed to show
the efficiency of NNS in a physical IoT environment. In addition, it
is planned to extend the proposed approach to more complex IoT
environments and to enhance with human-involved learning.

ACKNOWLEDGMENTS
This work was supported by Institute of Information communica-
tions Technology Planning Evaluation (IITP) grant funded by the
Korea government (MSIT) (No.2019-0-00231, Development of artifi-
cial intelligence based video security technology and systems for

public infrastructure safety) and in part by the National Research
Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. 2021R1G1A101097111).

REFERENCES
[1] Alwyn Burger, Christopher Cichiwskyj, Stephan Schmeißer, and Gregor Schiele.

2020. The Elastic Internet of Things-A platform for self-integrating and self-
adaptive IoT-systems with support for embedded adaptive hardware. Future
Generation Computer Systems 113 (2020), 607–619.

[2] Javier Cámara, Henry Muccini, and Karthik Vaidhyanathan. 2020. Quantita-
tive verification-aided machine learning: A tandem approach for architecting
self-adaptive iot systems. In 2020 IEEE International Conference on Software Ar-
chitecture (ICSA). IEEE, 11–22.

[3] EdmundM Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut
Veith. 2018. Model checking. MIT press.

[4] Omid Gheibi, Danny Weyns, and Federico Quin. 2021. Applying machine learn-
ing in self-adaptive systems: A systematic literature review. arXiv preprint
arXiv:2103.04112 (2021).

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

[6] ISO/IEC 20924:2018(E) 2018. Information technology — Internet of Things (IoT) —
Vocabulary. Standard. International Organization for Standardization, Geneva,
CH.

[7] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. 2009.
What is the best multi-stage architecture for object recognition?. In 2009 IEEE
12th international conference on computer vision. IEEE, 2146–2153.

[8] Euijong Lee, Young-Gab Kim, Young-Duk Seo, Kwangsoo Seol, and Doo-Kwon
Baik. 2017. Runtime verification method for self-adaptive software using reach-
ability of transition system model. In Proceedings of the Symposium on Applied
Computing. 65–68.

[9] Euijong Lee, Young-Duk Seo, and Young-Gab Kim. 2019. A nash equilibrium based
decision-making method for internet of things. Journal of Ambient Intelligence
and Humanized Computing (2019), 1–9.

[10] Euijong Lee, Young-Duk Seo, Se-Ra Oh, and Young-Gab Kim. 2021. A Survey
on Standards for Interoperability and Security in the Internet of Things. IEEE
Communications Surveys & Tutorials 23, 2 (2021), 1020–1047.

[11] Lee, Euijong and Kim, Young-Gab and Seo, Young-Duk and Seol, Kwangsoo and
Baik, Doo-Kwon. 2018. RINGA: Design and verification of finite state machine
for self-adaptive software at runtime. Information and Software Technology 93
(2018), 200–222.

[12] Lee, Euijong and Seo, Young-Duk and Kim, Young-Gab. 2019. Self-adaptive
framework based on MAPE loop for Internet of Things. sensors 19, 13 (2019),
2996.

[13] Henry Muccini and Karthik Vaidhyanathan. 2020. Leveraging machine learning
techniques for architecting self-adaptive iot systems. In 2020 IEEE International
Conference on Smart Computing (SMARTCOMP). IEEE, 65–72.

[14] Rashmika Nawaratne, Damminda Alahakoon, Daswin De Silva, Prem Chhetri,
and Naveen Chilamkurti. 2018. Self-evolving intelligent algorithms for facilitating
data interoperability in IoT environments. Future Generation Computer Systems
86 (2018), 421–432.

[15] Adrian Pauna, Ion Bica, Florin Pop, and Aniello Castiglione. 2019. On the rewards
of self-adaptive IoT honeypots. Annals of Telecommunications 74, 7 (2019), 501–
515.

[16] Mazeiar Salehie and Ladan Tahvildari. 2009. Self-adaptive software: Landscape
and research challenges. ACM transactions on autonomous and adaptive systems
(TAAS) 4, 2 (2009), 1–42.

[17] Matteo Antonio Scrugli, Daniela Loi, Luigi Raffo, and Paolo Meloni. 2019. A
runtime-adaptive cognitive IoT node for healthcare monitoring. In Proceedings of
the 16th ACM International Conference on Computing Frontiers. 350–357.

[18] Jeroen Van Der Donckt, Danny Weyns, Federico Quin, Jonas Van Der Donckt,
and Sam Michiels. 2020. Applying deep learning to reduce large adaptation
spaces of self-adaptive systems with multiple types of goals. In Proceedings of the
IEEE/ACM 15th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems. 20–30.

35

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryList_V1
 qi2base

